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EFFICIENT COMPUTATION OF OPTIMAL LOW THRUST GRAVITY
PERTURBED ORBIT TRANSFERS

Robyn Woollands∗†, Ehsan Taheri ‡, and John L. Junkins §

We have developed a new method for solving low-thrust fuel-optimal orbit transfer
problems in the vicinity of a large body (planet or asteroid), considering a high-
fidelity spherical harmonic gravity model. The algorithm is formulated via the
indirect optimization method, leading to a two-point boundary value problem (TP-
BVP). We make use of a hyperbolic tangent smoothing law for performing con-
tinuation on the thrust magnitude to reduce the sharpness of the control switches
in early iterations and thus promote convergence. The TPBVP is solved using
the method of particular solutions (MPS) shooting method and Picard-Chebyshev
numerical integration. Application of Picard-Chebyshev integration affords an av-
enue for increased efficiency that is not available with step-by-step integrators. We
demonstrate that computing the particular solutions with only a low-fidelity force
model greatly increases the efficiency of the algorithm while ultimately achieving
near machine precision accuracy. A salient feature of the MPS is that it is paral-
lelizable, and thus further speedups are available. It is also shown that, for near-
Earth orbits and over a small number of en-route revolutions around the Earth,
only the zonal perturbation terms are required in the costate equations to obtain
a solution that is accurate to machine precision and optimal to engineering pre-
cision. The proposed framework can be used for trajectory design around small
asteroids and also for orbit debris rendezvous and removal tasks.

INTRODUCTION

Designing optimal spacecraft orbit maneuvers using both continuous and impulsive thrust has
been the subject of interest for several decades.1–5 The challenge of accurately and efficiently find-
ing fuel- or time-optimal solutions for an orbit transfer where many variables, constraints and nu-
merical limitations are present is still an active area of research.6–8 Many approaches have been
proposed for solving these problems, and they typically fall into one of two categories: direct meth-
ods or indirect methods.9 Sometimes hybrid methods are used, which combine the two techniques.
A review of models, objectives, approaches and solutions is presented in.10

Direct methods involve formulating the optimization problem as a nonlinear programing (NLP)
problem whereby the states and controls are parameterized using a set of basis functions and the
parameters are iteratively updated until a solution is obtained. A drawback of these methods is that
they do not make use of Pontryagin’s maximum principle (PMP)11 to ensure at least local optimality,
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and in general many parameters are required to obtain an accurate sub-optimal solution using either
collocation or a shooting method.12, 13 On the other hand, a positive attribute of these methods is that
they typically have lower sensitivity with respect to starting estimates, and it is frequently possible
to adaptively increase the dimensionality with the highest required dimensionality used only for
final iterations. Significant historical contributions to direct methods have been made by Hargraves
and Paris,12 Betts,14 Enright and Conway,15, 16 Seywald17 and others.

Indirect methods seek to satisfy PMP by applying the necessary conditions for optimality. Al-
though these methods ensure that the solution is at least a local extremum, they result in boundary-
value problems that are usually very sensitive to an initial starting iterative and convergence is not
guaranteed. Indirect methods are frequently solved approximately with collocation where the state
equations, costate equations and prescribed boundary conditions are satisfied approximately through
parameterization using basis functions. The dimension of the unknown parameter vector grows as
higher accuracy is sought. However, even with limitation, practical results can be obtained for
many problems and the resulting sub-optimal solution can be used to start a corresponding indirect
algorithm. With a good initial guess for the costates, a shooting method may be utilized to solve
the Pontryagin necessary conditions and thus converge to a solution that meets the prescribed final
boundary conditions. Significant contributions to indirect methods have been made by Bryson,11

Miele,18–21 Brusch,22 Hull,23 and Conway.24

In this paper, we present a method for solving the optimal low-thrust fuel-optimal orbit transfer
problems in the vicinity of a large body (planet or asteroid) where a high-fidelity spherical harmonic
gravity model is required. The algorithm is formulated via the indirect variational calculus approach
which leads to a two-point boundary-value problem (TPBVP). The choice of coordinates for formu-
lating and solving a problem is important as it can effect the numerical convergence properties of the
solution method.25, 26 Therefore, we select the regularized modified equinoctial elements (MEEs)
because five out of the six elements vary slowly with time and generally result in increases in the
domain of convergence when solving TPBVPs via a shooting method.

We make use of a hyperbolic tangent smoothing law for performing continuation on the thrust
magnitude to reduce the sharpness of the control switches in early iterations and thus promote
convergence.27, 28 The TPBVP is solved using a single-shooting scheme that utilizes the method of
particular solutions (MPS)29 and Picard-Chebyshev numerical integration. Any integrator can be
used for propagating the resulting set of state/costate dynamics with MPS, however, we show that
using Picard-Chebyshev integration affords an avenue for increased efficiency that is not available
with other step-by-step integrators. We demonstrate that computing the particular solutions with
only a low-fidelity force model greatly increases the efficiency of the algorithm while ultimately
achieving near machine precision accuracy. We also show that for Earth-bound orbits only the
zonal harmonic terms are required in the costate equations to obtain a solution that is accurate to
near machine precision and therefore, optimal to engineering precision.

One application for this work is to respond to the various challenges in Space Situational Aware-
ness (SSA). The recent satellite collisions of Iridium and Cosmos in 2009,30 and the intentional
destruction of China’s Fengyun satellite in 2007,31 greatly increased the number of orbiting objects
and elevated the already challenging SSA problem. As of 2013 we could track over 20, 000 frag-
mented debris objects, over 1, 500 mission-related debris, and over 1, 500 rocket bodies orbiting
the Earth.32 This number will increase by an order of magnitude with the advent of the new radar
space fence by 2020. Optimal control (e.g., fuel-optimal) trajectories can be utilized to compute
extremal orbit transfers to see if spacecraft A can reach spacecraft B in a prescribed time window.
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Orbital debris is hazardous to operational satellites and reducing the risk of collisions is possible by
orbit debris rendezvous, capture and de-orbit missions directed at the most high priority debris ob-
jects. The cost of launching a spacecraft with large conventional propulsion systems to make plane
changes to capture debris makes conventional propulsion approaches to debris removal extremely
expensive. Therefore low thrust propulsion technology is attractive because much lower mass de-
bris capture spacecraft are feasible. Advancing the state of the practice for accurate and efficient
optimization of low-thrust maneuvers, using methods such as Picard-Chebyshev iteration and MPS,
that to date have not been used to tackle the optimal perturbed orbit transfer problem, are promising
avenues worth pursuing.

INDIRECT OPTIMAL CONTROL FORMULATION

We consider the problem of a spacecraft orbiting a large irregular body such as a planet or an as-
teroid where a high-fidelity gravity model is included in the dynamics. We adopt the MEEs as state
variables and include the variation of mass due to propellant spent as a function of time. MEEs are
well-suited to the optimization of low-thrust trajectories as they allow the most general representa-
tion that includes circular, elliptic and hyperbolic orbits without singularities at zero eccentricities
and inclinations. In addition, five of the six MEEs are considered “slow variables” as they vary
slowly with time. The sixth variable, the true longitude (l) is a fast variable and is a near linear
function of time. In contrast, the six Cartesian coordinates are all “fast variables” as they have more
nonlinear dynamics. Slow variables are particularly attractive from a numerical method standpoint
as slow variables remain in the linear domain for longer and thus increase the domain over which
TPBVP solvers will converge (i.e. shooting methods). In a set of recent papers, Taheri et al.25 and
Junkins and Taheri26 demonstrated the superiority of regularized element sets (including the MEEs)
over traditional Cartesian and spherical coordinate when they are used to formulate optimal orbit
transfer problem.

Equations of Motion

The MEEs (p,f ,g,h,k,l) are related to the classical orbit elements (a,e,i,Ω,w,ν) through the fol-
lowing set of equations:

p =a(1− e2), f =e cos(Ω + w), g =e sin(Ω + w),

h = tan(
i

2
) cos(Ω), k = tan(

i

2
) sin(Ω), l =Ω + w + ν,

where a is the semimajor axis, e is the eccentricity, i is the inclination, Ω is the right ascension of
the ascending node, w is the argument of perigee and ν is the true anomaly.

Let x = [p, f, g, h, k, l]> denote the vector of MEEs and let ad = [ar, at, an]> and uT =
[ur, ut, un]> denote the vector of perturbing gravitational accelerations and the vector of thrust
acceleration respectively, with components in the local-vertical/local-horizontal (LVLH) reference
frame. Let u = ad + uT denote the total acceleration expressed in the LVLH frame, the dynamics
of MEEs can be written as

ẋ = A(x) + B(x)u, (1)

where A(x) denotes the unforced part of the dynamics

A(x) =
[
0 0 0 0 0

√
µp(wp )2

]>
, (2)
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and B(x) denotes the control influence matrix

B(x) =



0 2p
w

√
p
µ 0√

p
µ sin(l)

√
p
µ

1
w [(w + 1) cos(l) + f ] −

√
p
µ
g
w [h sin(l)− k cos(l)]

−
√

p
µ cos(l)

√
p
µ

1
w [(w + 1) sin(l) + g]

√
p
µ
f
w [h sin(l)− k cos(l)]

0 0
√

p
µ
s2 cos(l)

2w

0 0
√

p
µ
s2 sin(l)

2w

0 0
√

p
µ

1
w [h sin(l)− k cos(l)]


. (3)

The dynamical model including the variation of the mass, the control and the gravitational per-
turbations are written as

ẋ = A(x) + Bad +
T

m
BP̂δ, (4)

ṁ =− T

c
δ, (5)

where the thrust direction uT = P̂δ. In the above equations m is the mass of the spacecraft, T is the
maximum allowable thrust, 0 ≤ δ ≤ 1 is the engine throttle, and c = Ispg0 is the exhaust velocity.
Isp and g0 are the specific impulse and the gravitational acceleration at sea level and P̂ denotes the
thrust steering unit direction vector. It is assumed that the spacecraft uses a constant specific impulse
(CSI) engine in which the maximum achievable thrust level and the specific impulse value are both
constant for all test cases.

Minimum-Fuel Bang-Bang Control

For minimum-fuel problems, the cost functional to be minimized can be written in terms of the
propellant mass mp consumed as

J =
T

c

∫ tf

t0

δ dt. (6)

The control inputs being optimized are Γ and δ. The Hamiltonian is formulated as follows

H =
T

c
δ + λ>

[
A + Bad +

T

m
BP̂δ

]
− λm

T

c
δ, (7)

where λ = [λp, λf , λg, λh, λk, λl]
> is the costate vector associated with the MEEs and λm is the

costate associated with the mass. Their dynamics is obtained by the Euler-Lagrange relation

λ̇ =−
[
∂H

∂x

]>
, (8)

λ̇m =− ∂H

∂m
. (9)

Expanding and rearranging the terms in the Hamiltonian leads to

H =
T

c
δ + λ>A + λ>Bad +

T

m
λ>BP̂δ − λm

T

c
δ. (10)
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The Hamiltonian is a linear function of both the unit thrust direction vector P̂ and the throttling
magnitude δ. Therefore, from PMP we can characterize the optimal (superscript ‘*’) thrust vector,

P̂∗ = arg min
||P̂||=1

H. (11)

The Hamiltonian is minimized, following Lawden,33 by defining the primer vector, P = −B>λλλ.
This leads to the optimal thrust direction unit vector

P̂∗ =
P
||P||

= − B>λ
||B>λ||

. (12)

Similarly, PMP is used to characterize the optimal throttling input as

δ∗ = arg min
0≤δ≤1

H. (13)

After substituting Eq. (12) into Eq. (10) and rearranging the terms, to determine δ we need to
minimize the term,

− T

c

[
c||B>λλλ||
m

+ λm − 1

]
δ → min. (14)

We can simplify our analysis by defining the term inside the parenthesis as a switching function

S ≡ c||B>λλλ||
m

+ λm − 1. (15)

The optimal value of the throttling input, δ∗, depends on the sign of the S,

δ∗(S) =

{
1, if S > 0,

0, if S < 0
=

1

2
[1 + sign(S)] . (16)

Hyperbolic Tangent Smoothing Function

The hyperbolic tangent smoothing function for any bounded control input is used to approximate
the sign function as

δ∗(S)bang-bang ≈ δ∗(S, ρ) =
1

2

[
(δl + δu) + (δu − δl) tanh

(
S

ρ

)]
, (17)

where ρ is the smoothing parameter (and 0 ≤ ρ ≤ 1 will be used as the continuation parameter
for the numerical continuation procedure). Clearly, as ρ → 0, the tanh function approximates the
sign function and therefore the optimal control necessary conditions are contained as the limiting
case of a one-parameter family. The continuation procedure for the simulations performed for this
paper ended once the value of ρ was less than 1× 10−5. For the problems considered in this paper,
the optimal engine throttling input has a bang-bang time history that can be expressed using a sign
function. Specifically, we have δl = 0, δu = 1. Therefore, the smoothed engine throttle input
becomes the smoothed step function.

δ∗(S) =
1

2
[1 + sign(S)] ∼= δ∗(S, ρ) =

1

2

[
1 + tanh

(
S

ρ

)]
. (18)
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The advantage of using a smoothed switch function is purely numerical. As the parameter ρ
is swept to increasingly smaller values, the switches become more abrupt, and approximate the
true bang-bang control structure to a greater accuracy. In the early iterations when the trajectory
is far from the final solution, abrupt changes in the acceleration can lead to prohibitive numerical
convergence cost because we need to isolate to high precision all S = 0 switch time(s) on each
iterative trajectory. In the case that the trajectory may consist of many switches, this increases the
overhead and if the S = 0 switch times are poorly isolated, quasi-random errors are introduced near
each control switch, which degrades the overall convergence severely.

The smoothing parameter allows the switches to occur continuously, ensuring numerical con-
vergence on each iteration. Qualitatively, introducing the smooth switches allows existing adaptive
integrators to “see the switch coming” and adapt step-size automatically while maintaining high pre-
cision. As ρ→ 0 the switches become sharper and the solution on the previously converged ρ value
is used to start the following iteration, through continuation. The smoothness of the switch function
means that the dynamics are also smooth in the initial iterations, and this is important when us-
ing any integrator and also important for path approximation integrators such as Picard-Chebyshev.
More details on the Picard-Chebyshev implementation will be presented in a later section.

For a fixed-time rendezvous problem, the final conditions can be written in the form of seven
equality constraints,

ψ(x(tf ), λm(tf ), tf ) =

[
x(tf )− xT
λm(tf )

]
= 0, (19)

where subscript ‘T’ denotes the target MEEs. Let z = [x>,m,λ>, λm]> denote the state/costate
vector, then, we can write,

ż = F =


ẋ
ṁ

λ̇

λ̇m

 , (20)

where P̂ = P̂∗ and δ = δ∗(S, ρ) are used in the RHS of Eq. (20). Numerical integration of
the equations of motion requires the full state/costate vector information at the initial time, t0.
However, only the state initial conditions are known, i.e., x(t0) = x0 and m(t0) = m0. Let
Υ(t0) = [λ>(t0), λm(t0)]

> denote the vector of unknown initial costates. The problem is to find
Υ(t0) = [λ>(t0), λm(t0)]

> such that Eq. (19) is satisfied. As a consequence, we have a TPBVP
that requires a starting estimate Υ(t0).

NUMERICAL ALGORITHM

In this section, we demonstrate the solution procedure for solving the TPBVP associated with
fuel-optimal orbit transfer problem using an indirect optimization method that combines the MPS
with a single-shooting scheme. The integrator used for propagating the equations is the Picard-
Chebyshev method.

Picard-Chebyshev Numerical Integration

Picard-Chebyshev iteration differs from the well-known step integrators, such as Gauss-Jackson
and Runge-Kutta, in that it is a path approximation numerical integrator rather than a step-by-step
integrator. Long state trajectory arcs are approximated continuously in time and are updated at all
time instances on each iteration.
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The technique combines Picard iteration with the orthogonal Chebyshev polynomials. Emile
Picard observed that any first order differential equation

dx(t)

dt
= f(t, x(t)), t ε [t0, tf ], (21)

with an initial condition x(t0) = x0 and any integrable right hand side may be rearranged, without
approximation, to obtain the following integral equation:

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ))dτ. (22)

Picard further proposed that a sequence of approximate solutions f i(t), (i = 1, 2, 3, ...,∞) , of
the true solution x(t) that satisfies this differential equation may be obtained through Picard iteration
using the following Picard sequence of approximate paths

{
x0(t), x1(t), ..., xi−1(t), xi(t), ...

}
:

xi(t) = x(t0) +

∫ t

t0

f(τ, xi−1(τ))dτ, i = 1, 2, ... (23)

Picard proved that for smooth, differentiable, single-valued nonlinear functions f(t, x(t)), there
is some maximum time interval |tf − t0| < d and a starting trajectory x0(t) that satisfies the fol-
lowing condition:

∥∥x0(t)− x(t)
∥∥
∞ < ∆. For suitable finite bounds (d,∆), the Picard sequence

of trajectories represents a contraction operator that converges to the unique solution of the initial
value problem. There is a literature34, 35 that deals with approximating (d,∆). These convergence
bounds are typically quite large in astrodynamics, where d can be up to three low Earth orbit periods
in Cartesian coordinates and over ten orbit periods in MEEs.36 Although the convergence domain
is large, it is not efficient to use such large segments and the trajectory is divided into multiple time
segments that are patched together head-to-tail. The rate of convergence is typically geometric. The
guaranteed convergence property sets the Picard-Chebyshev method apart from other integration
methods. The numerical accuracy and efficiency are dominated by the particular process used to
carry out the integral; note since the previous (i − 1) trajectory approximation is known, the inte-
grand is considered a function of time only. Chebyshev polynomials are used for approximating the
integrand in the Picard iteration sequence, and these orthogonal polynomials integrate to produce a
Chebyshev series for the integral, including the imposition of initial (or final) boundary conditions.

Picard-Chebyshev requires smooth functions that are twice differentiable. For the case of on-off
thrust the acceleration is not continuous/smooth and accurate propagation over the discontinuous
acceleration step input is a challenge for Picard-Chebyshev. To overcome this problem, we compute
the segment break times by numerically solving for the zeros of the switch function, thus allowing
us to strategically place segment breaks at the on/off thrust boundaries.

It is important that the hyperbolic tangent smoothing version of the switch function passes through
zero at exactly S = 0. After each MPS iteration the switch function is sampled on a cosine distri-
bution and fit with Chebyshev polynomials. The closest node on each side of the zero (one positive
and one negative) is used to start a secant method to solve for the value of τ (accurate to 13 dig-
its) corresponding to S = 0. The secant method can be thought of as a “finite difference” version
of Newton’s method and thus requires two initial times to get started. We can also use a Newton
method, since ds/dt is easily computed analytically, however, the secant method converges very
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Figure 1. An example of continuation on the switch function and thrust profile for a
low thrust orbit transfer between two low Earth orbits.

rapidly (usually in 2 or 3 iterations.) The converged τ value is converted to a time which is set as a
segment boundary in the next set of Picard-Chebyshev iterations.

As the value of ρ is reduced, through continuation (see Figure 1), the hyperbolic tangent function
approaches a step function and the thrusting profile approaches a “bang-bang” profile. The bang-
bang profile is certainly not smooth or continuous, however, the segment break points from the
previous MPS iteration are already in the vicinity of the switch, where the nodal density is high,
and so even if the precomputed switches are slightly shifted from the actual thrust arc on the current
iteration, the dynamics are still well approximated and the method converges. This method works
very well for thrust values in the range (0 ≤ T ≤ 2 N) where the abrupt changes in the acceleration
are small in magnitude, however for problems that require larger thrust magnitudes step-by-step
integrators may be a better choice.

The original fusion of orthogonal approximation theory and Picard iteration was introduced by
Clenshaw and Norton in 1963.37 Feagin published his PhD dissertation38 in 1972 on Picard iteration
using Chebyshev approximation. He established the first vector-matrix version of Picard iteration
utilizing orthogonal basis functions.39 In 1980 Shaver wrote a related dissertation giving insights on
parallel computation using Picard Iteration and Chebyshev approximation.40 In 1997 Fukushima41

addressed parallelization of Picard iteration in a particular computer architecture. His results showed
that a particular parallel implementation of his algorithm did not give the theoretical speedup he
anticipated.

A decade later Bai and Junkins revisited this approach and developed improved algorithms for
solving initial value problems (IVPs) and TPBVPs.42, 43 They established new convergence insights
and also developed vector-matrix formulations for solving initial and boundary value problems.
These are published in Bai’s PhD dissertation.44 Bani Younes and Junkins followed this work with
methods to include high-order gravity perturbations to more accurately represent the motion of
satellites orbiting in the vicinity of the Earth.45–48 Macomber and Junkins developed enhancements
that took advantage of the “fixed-point” convergence nature of Picard-Chebyshev iteration and al-
lowed solutions to the perturbed two-body problem to be computed using variable-fidelity force
models and radially adaptative gravity approximations. They also made use of warm and hot starts
for solving the perturbed problem.49, 50 These enhancements resulted in substantial increases in the
efficiency of Picard-Chebyshev while maintaining machine precision accuracy. Junkins and Wool-
lands built on this work to develop an accelerated and adaptive (self-tuning), Picard-Chebyshev
algorithm for solution of the perturbed two-body problem.51, 52
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Method of Particular Solutions

MPS differs from the well-known analytic state transition matrix (STM) method in that integra-
tion of the STM is not required. The STM integration involves 196 additional differential equations
that have to be propagated. Instead, MPS relies on the assumption of local linearity and makes
iterative differential corrections using a reference trajectory and a linear combination of the relative
displacements of the n particular solutions. In addition and unlike the STM method, the trajectory
does not need to be continuous.

MPS can be used to solve a TPBVP with any combination of unknown initial and final boundary
conditions. The following derivation is general in the sense that the initial costates are iteratively
updated to hit the desired final states. Similarly MPS may be used to iteratively update the initial
velocity to satisfy the desired final position when solving the perturbed Lambert’s problem.29, 53 For
the minimum-fuel optimal control problem with free final mass (m(tf )), we also have a known zero
final boundary condition λm, and this along with the final state boundary conditions are enforced
during the MPS iterations.

Consider the state and costate differential equations{
ẋ
λ̇

}
=

{
G (t, x(t),λ(t))
Q (t, x(t),λ(t))

}
, (24)

where x = [p, f, g, h, k, l,m]> and λ = [λp, λf , λg, λh, λk, λl, λm]>. MPS makes use of a refer-
ence trajectory xref(t), λref(t) and all neighboring solutions of Eq. (24) can be re-formulated exactly
in terms of a departure motion ∆x(t), ∆λ(t) as

x(t) =xref(t) +4r, ẋ(t) =ẋref(t) +4ṙ, (25)

λ(t) =λref(t) +4λ, λ̇(t) =λ̇ref(t) +4λ̇. (26)

From Eq. (25) and Eq. (24), we can write the exact departure motion differential equation:{
4ẋ
4λ̇

}
=

{
G (t, xref(t) +4x,λref(t) +4λ)
Q (t, xref(t) +4x,λref(t) +4λ)

}
−
{

ẋref(t)

λ̇ref(t)

}
. (27)

Now consider the circumstance that ẋref(t), λ̇ref(t) is a solution of the differential equation, which
satisfies “good” initial boundary conditions, in this case, the ∆’s can be expected to be small,
ẋref(t) = G (t, xref(t),λref(t)), λ̇ref(t) = Q (t, xref(t),λref(t)) and to a linear approximation, the
exact nonlinear Eq. (27) could be replaced by an approximate linear equation of the form{

4ẋ
4λ̇

}
= A

{
4x
4λ

}
+O(42). (28)

where A is the time varying Jacobian of G and Q with respect to x and λ evaluated along xref(t)
and λref(t). To within the accuracy that the linear terms of Eq. (28) approximate the exact departure
motion of Eq. (27), we can consider that the departure motion is linear. Consider also the case that
the reference motion satisfies the known left boundary elements exactly xref(t0) = x0, and the initial
costates λref(t0) represents the current best estimate of the unknown initial costates. In this paper,
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we select n = 7 as there are seven unknown initial costates (λp, λf , λg, λh, λk, λl, λm) that we wish
to determine. For this given (or just computed) xref(t), consider n neighboring variant trajectories
obtained by varying the initial costates by small linearly independent perturbations.

xj(t0) = xref(t0) = x0, λj(t0) = λref(t0) +4λj(t0), j = 1, 2, ..., n. (29)

Now solve the differential Eq. (24) for each of the n particular solutions xj(t), λj(t). We can
compute the exact departure motions

4xj(t) = xj(t)− xref(t). (30)

These exact departure motions are particular solutions and conjectured to approximately satisfy the
linear differential equation in Eq. (28). Since independent costate initial conditions were used, it
is assumed that these trajectories span the space of interest along with all neighboring trajectories
of interest that also satisfy the linear departure motion Eq. (28). The linear combination of any
particular solution of a linear differential equation satisfies the differential equation as well, and the
general solution as a linear combination of n departure motions can be written in the form:

4x(t) ≈
n∑
j=1

αj4xj(t)⇒ x(t) ≈ xref(t) +

n∑
j=1

αj4xj(t). (31)

λ(t) = λref(t) +
n∑
j=1

αj4λ(t). (32)

Evaluating Eq. (31) at the final time and imposing the desired result that x(tf ) = xf , leads to the
solution for the coefficients of linear combination

α1

...
αn

 ≈ [ 4x1(tf ) · · · 4xn(tf )
]−1 {x(tf )− xref(tf )} . (33)

Given the αis, we can compute the departure4x(t) and4λ(t) at any time t.

4x(tf ) = α14x1(tf ) + ...+ αn4xn(tf ), (34)

4λ(tf ) = α14λ1(tf ) + ...+ αn4λn(tf ). (35)

The costate departure equation obviously holds at time t0, so the time derivative of Eq. (33), evalu-
ated at time t0, allows a new estimate for the initial costates to be calculated.

λnew(t0) = λref(t0) +

n∑
j=1

αj4λj(t0). (36)

Given an invertible matrix in Eq. (33), Eq. (24) can now be re-solved with the reference trajectory’s
initial costate replaced by λnew(t0). We iterate for improved values of α using Eqs. (33) and (36),
analogous to Newton’s method, but without the necessity of solving the STM to obtain the partials
∂x(tf )
∂λ0

.
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Local Force Approximations

Any numerical integrator can be used for solving TPBVPs with the MPS. However, using Picard-
Chebyshev affords an avenue for increased efficiency that is not available with other step-by-step
integrators. The two key features of this method that make it unique with respect to other TPBVP
solvers are, first, Picard-Chebyshev is a path approximation numerical integrator, and second, the
particular solutions lie close to the reference trajectory. As a first consequence, the current trajectory
is a hot start for all neighboring particular solutions of the MPS approach.

The path approximation nature of the MPS means that at each Picard iteration the Cheybshev
nodes along the trajectory are being updated and are converging towards fixed points in space.
The fact that during terminal convergence the Picard iteration solutions lie so close to converged
reference trajectory (within the linear domain) means that each node along the iterative solutions
converges to a fixed point in space that is very close to the location of the converged node on
the reference trajectory. These comments also apply, approximately to the neighboring particular
solutions of the MPS approach.

We know from previous studies50–52 that the gravity gradient is constant to greater than 9 digits
within 50 meters of a converged node. As a result, it is not necessary to call the full, computationally
expensive, gravity model when computing the particular solutions. Instead we can use local force
approximations, with respect to the reference trajectory, that significantly accelerate the computa-
tional efficiency without loss of accuracy. Woollands et al.53 utilized a similar approach for solving
the perturbed Lambert’s problem with MPS and Picard-Chebyshev iteration.

Let a2B denote the two-body acceleration vector, the high-fidelity (full) and low-fidelity (low)
accelerations vectors computed at each of the nodes along the reference trajectory are denoted as

afullref = a(70×70) spherical harmonic gravity, (37)

alowref = a2Bref + a(J2+J3+J4+J5+J6)ref . (38)

The acceleration offset (∆a) between the high- and low-fidelity models on the reference trajectory
is given by

∆a = afullref − alowref . (39)

Since the particular solutions are assumed to remain close to the reference trajectory, their acceler-
ations may be approximated (without calling the full force model) at any node using Eq. (40).

aapproxparticular
= a2Bparticular + a(J2+J3+J4+J5+J6)particular + ∆a. (40)

Remarkably, we demonstrate that computing the seven particular solutions with only low-fidelity
approximate gravity function evaluations, that is, two-body plus zonal perturbations plus the dif-
ference between the full force evaluation and two-body plus zonal perturbations on the reference
trajectory, greatly increases the efficiency of the algorithm while maintaining near-machine preci-
sion accuracy. Qualitatively, this is because the resulting corrections are continuously to the right,
most four or fewer significant digits, and the approximate gravity gives ∆λj(t0) that contribute to
four or fewer digits in the terminal iterations. In the following section we show that solving the the
fuel-optimal transfer problem using MPS with Picard-Chebyshev iteration requires about an order
of magnitude fewer function evaluations than the classical single-shooting method.

Costate differential equations are derived by applying the Euler-Lagrange equation, i.e., taking
partial derivatives of the Hamiltonian with respect to each of the states (multiplied by negative one).
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This is achieved through an automated code (using MATLAB’s symbolic toolbox) that has been
developed and used extensively in previous works.25–27 The complexity of the costate differential
equations can vary depending on the fidelity of the gravity model required for propagating the state
equations.

In this paper, we consider a 70× 70 degree and order spherical harmonic gravity model for prop-
agating the state equations. Deriving the costate equations with this high-fidelity gravity model
is time consuming (even with a symbolic manipulator) and leads to long expressions that are nu-
merically expensive to evaluate and solve. Depending on the complexity of the state dynamics,
generation of the algebraic expressions that describe costate dynamics may take a couple of hours
(or more). As a consequence, a reduced-order force model (two-body plus the disturbing accel-
erations due to J2 through J4 zonal harmonic terms) is used for deriving the costate differential
equations. Note that we still consider a high-fidelity force model in the state differential equations.

Some of the important relations that are required for implementing J2 to J4 zonal harmonics are
explained for clarity. The components of the acceleration due to J2, J3 and J4 (when expressed in
the LVLH frame) are given54

aJ2 =

−
3µJ2R2

2r4
(1− 3s2i s

2
θ)

−3µJ2R2

r4
s2i sθcθ

−3µJ2R2

r4
sicisθ

 , aJ3 =

−
µJ3R2

r5

[
6sicθ − 5

2s
3
i (3sθ − s3θ)

]
−µJ3R2

2r5

[
15
4 s

3
i (cθ − c3θ)− 3sicθ

]
−µJ3R2

2r5

[
15
2 s

2
i ci(1− c2θ)− 3ci

]


aJ4 =

−
5µJ4R4

8r6

[
15s2i (1− c2θ)− 35

8 s
4
i (3− 4c2θ + c4θ)− 3

]
−5µJ4R2

2r6

[
7
4s

4
i cθ(3sθ − s3θ)− 3s2i sθcθ

]
−5µJ4R2

2r6

[
7
4s

3
i ci(3sθ − s3θ)− 3sicisθ

]
 ,

where snθ = sin(nθ), cnθ = cos(nθ), si = sin(i) and ci = cos(i). In addition, the classical
elements inclination, i, and true anomaly θ are related to p, q, l.55 It is also possible to express the
terms in parentheses (e.g, (3− 4c2θ + c4θ) in terms of sθ and cθ) in terms of the existing relations.
Ultimately, the perturbing accelerations can be expressed entirely as a function of MEEs.

Since solution of the costate equations determines the optimal control, using a lower-fidelity
model in the costate equations will only effect the degree of “optimality” attainable by the algorithm.
As long as the state equations contain the high-fidelity force model, the solution will accurately
represent the orbit dynamics but with a slightly reduced performance (marginally sub-optimal) for
making the maneuver. We investigate how including various zonal perturbations (J2 through J4)
affects the final mass, and we find that typically engineering precision for the optimal control is
obtained.

OPTIMAL ORBIT TRANSFER EXAMPLES

We demonstrate the performance of our algorithm by solving fuel-optimal trajectories between
four sets of boundary conditions in a fixed time-of-flight. The initial and final MEEs are given in
Table 1. In all cases the initial spacecraft mass is 100 kg, the maximum allowable thrust magnitude
is 2 N, and the specific impulse of the propulsion system is 3000 seconds. We use a 70× 70 degree
and order spherical harmonic gravity model for propagating the orbit equations of motion, and test
several lower-fidelity gravity models in the costate equations, from two-body through to the fourth
zonal harmonic (J2 = 1082.63× 10−6, J3 = −2.52× 10−6, J4 = −1.61× 10−6).
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Table 1. Initial and final conditions for the four test case orbits.

p (R⊕) f g h k l (rad) m(t0) (kg) t (hours)

Case 1 Initial 1.060 0.010 0 0.254 0 0 100 0
Final 1.159 0.010 0.006 0.253 0.001 35.221 free 9.221

Case 2 Initial 1.060 0.010 0 0.613 0 0 100 0
Final 1.159 0.010 0.005 0.612 0.001 35.221 free 9.221

Case 3 Initial 1.100 0.010 0 1.091 0 0 100 0
Final 1.212 0.010 0.006 1.090 0.003 35.041 free 9.747

Case 4 Initial 1.200 0.010 0 0.044 0 0 100 0
Final 1.346 0.012 0.007 0.043 0.002 34.560 free 11.106

Case 1 Case 2

Case 3 Case 4
Figure 2. Low thrust orbit spirals for the four test cases presented in Table 1.
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Figure 2 shows the optimal transfer trajectory for the four test case orbits summarized in Table 1,
where the white arrows represent the instantaneous thrust vector. Figures 3 and 4 show the time
histories of the six MEEs and the corresponding costates for Case 1. The mass and mass costate
time histories are shown in the left panel of Figure 5, and the switch function and thrust profile are
shown in the right panel. The final value of the costate associated with mass converges to zero.

Lawden’s primer vector determines the optimal direction of thrusting. However, the time history
of the switch function automatically determines when thrust and coast arcs should occur to ensure
optimality. When the switch function is positive the thruster is switched on to the maximum thrust
level (T = 2 N), and when the switch function is negative the thrust is off.

Note that the switch function is plotted with circles that clearly reveal the clustering of Chebyshev
nodes, by design, near the on/off switch points, which also correspond to the segment break times.
Twelve thrust arcs and twelve coast arcs are required for completing the optimal orbit transfer, which
raise the semimajor axis by 629 km in about 9.2 hours.

Figure 3. Time histories of MEEs for Case 1.

Figure 4. Time history of costates associated with the MEEs for Case 1.

Figures 6, 7 and 8 show the time histories of the states, costates, mass, switch function and thrust
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Figure 5. Mass and it corresponding costate time histories (left), and switch function
and it corresponding thrusting profile (right) for Case 1.

for Case 2, which has the same starting orbit as Case 1 but with a greater inclination. The optimal
transfer consists of twelve coast arcs and eleven thrust arcs. Further notice, the control appears
graphically to switch instantaneously, although the control is mathematically smooth. Moreover,
the thrust profile indicates that the transfer has initial and final coast arcs. The existence of late-
departure and early-arrival phenomena is discussed in details in.56 Taheri and Junkins have shown
in56 that the combination of the prescribed boundary conditions along with the chosen time of flight
and engine parameters lead to this situation. These boundary coast intervals usually occur when
the existing thrust magnitude is a large value. As a consequence of the extra thrust (and its ensuing
acceleration), the spacecraft remains on the initial orbit for some time interval and then fires its
engine at an appropriate time instant, which is determined through optimality criteria. Similarly, the
spacecraft merges into the final orbit at a time earlier than what has been prescribed as the final time,
tf . If the final boundary conditions represented a target body, the existence of early-arrival condition
means that the spacecraft has established a rendezvous status (i.e., the velocity and position vectors
of the spacecraft and target body match) earlier than the prescribed final time. Note that the existence
and introduction of terminal coast phases is a standard approach for improving an existing impulsive
solution.57 On the other hand, as the thrust magnitude is increased, the duration of thrust arcs
get smaller. Eventually, infinite instantaneous thrust approximates the velocity impulses. These
impulsive maneuvers frequently consist of late-departure and early-arrival coast boundaries.

Table 2 shows the final mass of the spacecraft using different models for the costate equations.
The first row in the table shows the simulation results for the four test cases, using a 70× 70 degree
and order spherical harmonic gravity model for the dynamic equations and a two-body model for the
costate equations. The second, third and fourth rows show the final spacecraft mass upon arrival,
using a 70 × 70 degree and order spherical harmonic gravity model for the dynamic equations
and inclusion of various zonal perturbations in the costate model. The zonal perturbations in the
costate equations are computed analytically as described earlier. The results indicate that as higher
order terms are included, the final mass decreases. However, it is clear from these simulations
and results that taking into account the perturbing acceleration due to the third and fourth zonal
harmonics in the costate equations affects the amount of fuel used at the milligrams level or less.
This suggests that we have already reached the point of diminishing returns. Several of the tesseral
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Figure 6. Time histories of the MEEs for Case 2.

Figure 7. Costate time histories associated with the MEEs for Case 2.

Figure 8. Mass and it corresponding costate time histories (left), and switch function
and it corresponding thrusting profile (right) for Case 2.
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and sectorial harmonics are comparable to J3 and J4, it is likely that the full gravity field will affect
the fuel consumed in the 8th or higher significant figure. These remarks appear to hold for a small
number of revolutions and for the non-resonant cases. Using analogous computations, this approach
provides insight to mission designers that is useful for determining what fidelity costate model to
use depending on the accuracy of the optimality required for mission design purposes.

We should mention that Kechichian54 had performed a similar analysis for time-optimal trans-
fers from a low-Earth orbit to the geostationary Earth orbit using a relatively high constant thrust
acceleration. The ensuing transfer takes place over a short time interval during which the spacecraft
experiences very little zonal perturbation effects. Therefore, the net result between the case when
J2 is considered and the case when J2 up to J4 are considered is negligible (which reflect itself in
minor differences between the final true longitude at the insertion point to the GEO orbit). However,
accumulation of the effects of zonal harmonics will have a greater impact on the time of flight on
multi-revolution low-thrust trajectories as is shown for time-optimal maneuvers.58 A similar im-
pact on the final delivered mass is predictable for long multi-revolution fuel-optimal trajectories.
Also long-spiral resonant transfer cases where the target orbit period becomes an bears an integer
relationship to 2π

24 hours require special attention.

Table 2. Final spacecraft mass for different gravity models used for deriving costate dynamics.

mf (kg)

Gravity Model Case 1 Case 2 Case 3 Case 4
Two-body 98.867207529 98.867148693 98.802667679 98.635625919
Two-body + J2 98.867203666 98.867133484 98.802650475 98.635541013
Two-body + J2+J3 98.867203411 98.867133410 98.802650663 98.635544058
Two-body + J2+J3+J4 98.867203391 98.867133396 98.802650691 98.635544452

CONCLUSION

We have presented a new method for solving the optimal low thrust minimum-fuel orbit transfer
problem in the near vicinity of a large body (planet or asteroid), considering a high fidelity spherical
harmonic gravity model for the state dynamics. The algorithm was formulated via the indirect varia-
tional calculus approach, leading to a two-point boundary value problem. As state variables, we used
the modified equinoctial elements, and the corresponding initial costates were updated iteratively in
order to converge to the target final state boundary conditions. We made use of a hyperbolic tangent
smoothing law for performing continuation on the thrust magnitude to reduce the sharpness of the
control switches in early iterations and thus promote efficient and accurate convergence. The two-
point boundary value problem is solved using the method of particular solutions shooting method
and Picard-Chebyshev numerical integration. Any integrator could be used for solving TPBVPs
with the method of particular solutions, however we show that using Picard-Chebyshev integration
affords an avenue for increased efficiency that is not available with step-by-step integrators. We
demonstrate that computing the particular solutions with only a low fidelity force model greatly in-
creases the efficiency of the algorithm while ultimately achieving near machine precision accuracy.
We are confident that this new optimal low thrust transfer algorithm will have widespread use and
applicability in the astrodynamics community. In particular, it would be very useful for trajectory
design in the near vicinity of small asteroids and also for “traveling salesman problem” associated
with orbit debris rendezvous and removal.
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Figure 9. Comparison of the number of high-fidelity spherical harmonic gravity force
function evaluations.
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